IONIC EQUILIBRIUM

OSTWALD DILUTION LAW:

O Dissociation constant of weak acid (K_a),

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[C\alpha][C\alpha]}{C(1-\alpha)} = \frac{C\alpha^{2}}{1-\alpha}$$

If $\alpha << 1$, then $1 - \alpha \cong 1$ or $K_{a} = c\alpha^{2}$ or $\alpha = \sqrt{\frac{K_{a}}{C}} = \sqrt{K_{a} \times V}$

O Similarly for a weak base, $\alpha = \sqrt{\frac{K_b}{C}}$. Higher the value of K_a / K_b , strong

is the acid / base.

Acidity and pH scale :

:. $pH = -\log a_{H^+}$ (where a_{H^+} is the activity of H^+ ions = molar concentration for dilute solution).

PROPERTIES OF WATER :

3.

- 1. In pure water $[H^+] = [OH^-]$ so it is Neutral.
- 2. Molar concentration / Molarity of water = 55.56 M.

Ionic product of water (K_w) : $K_w = [H^+][OH^-] = 10^{-14}$ at 25° (experimentally)pH = 7 = pOHpH < 7 or pOH > 7pH < 7 or pOH > 7pH > 7 or pOH < 7pH > 7 or pOH < 7

4. Degree of dissociation of water :

 $\alpha = \frac{\text{no. of moles dissociated}}{\text{Total No. of moles initially taken}} = \frac{10^{-7}}{55.55} = 18 \times 10^{-10} \text{ or } 1.8 \times 10^{-7} \%$

5. Absolute dissociation constant of water :

$$\begin{split} \mathsf{K}_{a} &= \mathsf{K}_{b} = \frac{[\mathsf{H}^{+}][\mathsf{O}\mathsf{H}^{-}]}{[\mathsf{H}_{2}\mathsf{O}]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \times 10^{-16} \\ \mathsf{p}\mathsf{K}_{a} &= \mathsf{p}\mathsf{K}_{b} = -\log\left(1.8 \times 10^{-16}\right) = 16 - \log\ 1.8 = 15.74 \end{split}$$

 $K_a \times K_b = [H^+] [OH^-] = K_w$

- ⇒ Note: for a conjugate acid- base pairs $pK_a + pK_b = pK_w = 14$ at 25°C. pK_a of H_3O^+ ions = -1.74 pK_b of OH ions = -1.74.
- pH Calculations of Different Types of Solutions:

(a) Strong acid solution :

0

- (i) If concentration is greater than 10⁻⁶ M In this case H⁺ ions coming from water can be neglected,
- (ii) If concentration is less than 10⁻⁶ M In this case H⁺ ions coming from water cannot be neglected

(b) Strong base solution :

Using similar method as in part (a) calculate first [OH-] and then use [H+] \times [OH-] = 10^{-14}

(c) pH of mixture of two strong acids :

Number of H⁺ ions from I-solution = N_1V_1 Number of H⁺ ions from II-solution = N_2V_2

$$[H^+] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

(d) pH of mixture of two strong bases :

$$[OH^{-}] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

(e) pH of mixture of a strong acid and a strong base :

If $N_1V_1 > N_2V_2$, then solution will be acidic in nature and

$$[H^+] = N = \frac{N_1 V_1 - N_2 V_2}{V_1 + V_2}$$

If $N_2V_2 > N_1V_1$, then solution will be basic in nature and

CLICK HERE

>>

$$[OH^{-}] = N = \frac{N_2 V_2 - N_1 V_1}{V_1 + V_2}$$

(f) pH of a weak acid(monoprotic) solution :

$$\begin{split} \mathsf{K}_{\mathsf{a}} &= \frac{[\mathsf{H}^+] \, [\mathsf{O}\mathsf{H}^-]}{[\mathsf{H}\mathsf{A}]} = \frac{\mathsf{C}\alpha^2}{1-\alpha} \\ \text{if } \alpha <<1 \Rightarrow (1-\alpha) \approx 1 \qquad \Rightarrow \qquad \mathsf{K}_{\mathsf{a}} \approx \mathsf{C}\alpha^2 \end{split}$$

 $\Rightarrow \alpha = \sqrt{\frac{K_a}{C}}$ (is valid if $\alpha < 0.1$ or 10%) On increasing the dilution $C \downarrow \Rightarrow \alpha \uparrow$ and $[H^+] \downarrow \Rightarrow pH \uparrow$ \Rightarrow **RELATIVE STRENGTH OF TWO ACIDS :** $\frac{[\text{H}^+] \text{ furnished by I acid}}{[\text{H}^+] \text{ furnished by II acid}} = \frac{c_1 \alpha_1}{c_2 \alpha_2} = \sqrt{\frac{k_{a_1} c_1}{k_{a_2} c_2}}$ 0 SALT HYDROLYSIS : Salt of Type of hydrolysis k, h pН $\frac{k_{w}}{k_{a}} = \sqrt{\frac{k_{w}}{k_{a}c}} = 7 + \frac{1}{2} pk_{a} + \frac{1}{2} \log c$ (a) weak acid & strong base anionic $\frac{k_{w}}{k_{b}} = \sqrt{\frac{k_{w}}{k_{b}c}} = 7 - \frac{1}{2} pk_{b} - \frac{1}{2} \log c$ cationic (b) strong acid & weak base $\frac{k_{w}}{k_{a}k_{b}}\sqrt{\frac{k_{w}}{k_{a}k_{b}}} 7 + \frac{1}{2}pk_{a} - \frac{1}{2}pk_{b}$ (c) weak acid & weak base both (d) Strong acid & strong base -----do not hydrolysed-----pH = 7

Hydrolysis of ployvalent anions or cations

For $[Na_3PO_4] = C$. $K_{a1} \times K_{h3} = K_w$ $K_{a1} \times K_{h2} = K_w$ $K_{a3} \times K_{h1} = K_w$

Generally pH is calculated only using the first step Hydrolysis

$$\begin{split} \mathsf{K}_{h1} &= \frac{\mathsf{Ch}^2}{1-\mathsf{h}} \approx \mathsf{Ch}^2 \\ \mathsf{h} &= \sqrt{\frac{\mathsf{K}_{h1}}{\mathsf{c}}} \qquad \Rightarrow [\mathsf{OH}^-] = \mathsf{ch} = \sqrt{\mathsf{K}_{h1} \times \mathsf{c}} \quad \Rightarrow [\mathsf{H}^+] = \sqrt{\frac{\mathsf{K}_{\mathsf{W}} \times \mathsf{K}_{\mathsf{a3}}}{\mathsf{C}}} \\ \mathsf{So} \quad \mathsf{pH} &= \frac{1}{2} [\mathsf{pK}_{\mathsf{w}} + \mathsf{pK}_{\mathsf{a3}} + \mathsf{logC}] \end{split}$$

BUFFER SOLUTION :

(a) Acidic Buffer : e.g. $CH_3 COOH$ and $CH_3 COONa$. (weak acid and salt of its conjugate base).

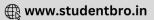
 $pH=pK_a + log \frac{[Salt]}{[Acid]}$

[Henderson's equation]

(b) Basic Buffer : e.g. $NH_4OH + NH_4CI$. (weak base and salt of its conjugate acid).

$$pOH = pK_b + log \frac{[Salt]}{[Base]}$$

SOLUBILITY PRODUCT :


 $K_{SP} = (xs)^{x} (ys)^{y} = x^{x}.y^{y}.(s)^{x+y}$

CONDITION FOR PRECIPITATION :

If ionic product $K_{LP} > K_{SP}$ precipitation occurs,

if $K_{LP} = K_{SP}$ saturated solution (precipitation just begins or is just prevented).

